Conclusion
In conclusion, based on network pharmacology, molecular docking, and experimental verification in vitro, we proposed that the TP can inhibit the activation of RORγt and the JAK2/STAT3 signaling pathway and inhibit the differentiation of T helper 17 cells cells. The article provide a theoretical basis for further development and utilization of TWHF in AS management.
Methods
We gathered AS-related genes using databases including DrugBank, OMIM, GeneCards, TTD and DisGeNET. TCMSP database was used to collect Tripterygium wilfordii (TWHF)-related data. Additionally, the potential targets of TWHF in treating AS were predicted by consulting databases such as Venny, String, Cytoscape, and Cytohubba. Subsequently, a protein-protein interaction network was created and the gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed by metascape database. After selecting the most active ingredient of TWHF, molecular docking was performed to confirm the predicted
Objective
This study aimed to validate the mechanism of triptolide in treating ankylosing spondylitis (AS) through network pharmacology, molecular docking, and in vitro experiments.
