Dendritic Organic Electrochemical Transistors Grown by Electropolymerization for 3D Neuromorphic Engineering

通过电聚合生长的树枝状有机电化学晶体管用于 3D 神经形态工程

阅读:7
作者:Kamila Janzakova, Mahdi Ghazal, Ankush Kumar, Yannick Coffinier, Sébastien Pecqueur, Fabien Alibart

Abstract

One of the major limitations of standard top-down technologies used in today's neuromorphic engineering is their inability to map the 3D nature of biological brains. Here, it is shown how bipolar electropolymerization can be used to engineer 3D networks of PEDOT:PSS dendritic fibers. By controlling the growth conditions of the electropolymerized material, it is investigated how dendritic fibers can reproduce structural plasticity by creating structures of controllable shape. Gradual topologies evolution is demonstrated in a multielectrode configuration. A detailed electrical characterization of the PEDOT:PSS dendrites is conducted through DC and impedance spectroscopy measurements and it is shown how organic electrochemical transistors (OECT) can be realized with these structures. These measurements reveal that quasi-static and transient response of OECTs can be adjusted by controlling dendrites' morphologies. The unique properties of organic dendrites are used to demonstrate short-term, long-term, and structural plasticity, which are essential features required for future neuromorphic hardware development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。