High Cholesterol-Induced Bone Loss Is Attenuated by Arctiin via an Action in Osteoclasts

牛蒡素通过作用于破骨细胞减轻高胆固醇引起的骨质流失

阅读:11
作者:Guoen Li, Jung-Nam Park, Hyun-Jung Park, Jae-Hee Suh, Hye-Seon Choi

Abstract

High cholesterol-induced bone loss is highly associated with oxidative stress, which leads to the generation of oxysterols, such as 7-ketocholesterol (7-KC). Here, we conducted in vivo and in vitro experiments to determine whether arctiin prevents high cholesterol diet-induced bone loss by decreasing oxidative stress. First, arctiin was orally administered to atherogenic diet (AD)-fed C57BL/6J male mice at a dose of 10 mg/kg for 6 weeks. Micro-computerized tomography (μCT) analysis showed that arctiin attenuated AD-induced boss loss. For our in vitro experiments, the anti-oxidant effects of arctiin were evaluated in 7-KC-stimulated osteoclasts (OCs). Arctiin decreased the number and activity of OCs and inhibited autophagy by disrupting the nuclear localization of transcription factor EB (TFEB) and downregulating the oxidized TFEB signaling pathway in OCs upon 7-KC stimulation. Furthermore, arctiin decreased the levels of reactive oxygen species (ROS) by enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase, and heme oxygenase 1 (HO-1), all of which affected OC differentiation. Conversely, silencing of Nrf2 or HO-1/catalase attenuated the effects of arctiin on OCs. Collectively, our findings suggested that arctiin attenuates 7-KC-induced osteoclastogenesis by increasing the expression of ROS scavenging genes in the Nrf2/HO-1/catalase signaling pathway, thereby decreasing OC autophagy. Moreover, arctiin inhibits the oxidation and nuclear localization of TFEB, thus protecting mice from AD-induced bone loss. Our findings thus demonstrate the therapeutic potential of arctiin for the prevention of cholesterol-induced bone loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。