Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson's Disease

短双歧杆菌 CCFM1067 对 MPTP 诱发的帕金森病小鼠模型的神经保护作用

阅读:6
作者:Tiantian Li, Chuanqi Chu, Leilei Yu, Qixiao Zhai, Shunhe Wang, Jianxin Zhao, Hao Zhang, Wei Chen, Fengwei Tian

Abstract

There is mounting evidence that the microbiota-gut-brain axis (MGBA) is critical in the pathogenesis and progression of Parkinson's disease (PD), suggesting that probiotic therapy restoring gut microecology may slow down disease progression. In this study, we examined the disease-alleviating effects of Bifidobacterium breve CCFM1067, orally administered for 5 weeks in a PD mouse model. Our study shows that supplementation with the probiotic B. breve CCFM1067 protected dopaminergic neurons and suppressed glial cell hyperactivation and neuroinflammation in PD mice. In addition, the antioxidant capacity of the central nervous system was enhanced and oxidative stress was alleviated. Moreover, B. breve CCFM1067 protected the blood-brain and intestinal barriers from damage in the MPTP-induced mouse model. The results of fecal microbiota analysis showed that B. breve CCFM1067 intervention could act on the MPTP-induced microecological imbalance in the intestinal microbiota, suppressing the number of pathogenic bacteria (Escherichia-Shigella) while increasing the number of beneficial bacteria (Bifidobacterium and Akkermansia) in PD mice. In addition, the increase in short chain fatty acids (acetic and butyric acids) may explain the anti-inflammatory action of B. breve CCFM1067 in the gut or brain of the MPTP-induced PD mouse model. In conclusion, we demonstrated that the probiotic B. breve CCFM1067, which can prevent or treat PD by modulating the gut-brain axis, can be utilized as a possible new oral supplement for PD therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。