Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy

新型闪烁纳米粒子在光动力癌症治疗中的潜在应用

阅读:10
作者:Bianca A da Silva, Michael Nazarkovsky, Helmut Isaac Padilla-Chavarría, Edith Alejandra C Mendivelso, Heber L de Mello, Cauê de S C Nogueira, Rafael Dos S Carvalho, Marco Cremona, Volodymyr Zaitsev, Yutao Xing, Rodrigo da C Bisaggio, Luiz A Alves, Jiang Kai

Abstract

The development of X-ray-absorbing scintillating nanoparticles is of high interest for solving the short penetration depth problem of visible and infrared light in photodynamic therapy (PDT). Thus, these nanoparticles are considered a promising treatment for several types of cancer. Herein, gadolinium oxide nanoparticles doped with europium ions (Gd2O3:Eu3+) were obtained by using polyvinyl alcohol as a capping agent. Hybrid silica nanoparticles decorated with europium-doped gadolinium oxide (SiO2-Gd2O3:Eu3+) were also prepared through the impregnation method. The synthesized nanoparticles were structurally characterized and tested to analyze their biocompatibility. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy confirmed the high crystallinity and purity of the Gd2O3:Eu3+ particles and the homogeneous distribution of nanostructured rare earth oxides throughout the fumed silica matrix for SiO2-Gd2O3:Eu3+. Both nanoparticles displayed stable negative ζ-potentials. The photoluminescence properties of the materials were obtained using a Xe lamp as an excitation source, and they exhibited characteristic Eu3+ bands, including at 610 nm, which is the most intense transition band of this ion. Cytotoxicity studies on mouse glioblastoma GL261 cells indicated that these materials appear to be nontoxic from 10 to 500 μg·mL-1 and show a small reduction in viability in non-tumor cell lines. All these findings demonstrate their possible use as alternative materials in PDT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。