Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review

自然启发式优化算法及其在多阈值图像分割中的意义:综述

阅读:8
作者:Rebika Rai, Arunita Das, Krishna Gopal Dhal

Abstract

Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。