Deciphering the Interactome of Histone Marks in Living Cells via Genetic Code Expansion Combined with Proximity Labeling

通过遗传密码扩展结合邻近标记解密活细胞中的组蛋白标记相互作用组

阅读:5
作者:Yepei Huang, Guijin Zhai, Yanan Li, Yue Han, Chen Chen, Congcong Lu, Kai Zhang

Abstract

Deciphering the endogenous interactors of histone post-translational modifications (hPTMs, also called histone marks) is essential to understand the mechanisms of epigenetic regulation. However, most of the analytical methods to determine hPTM interactomes are in vitro settings, lacking interrogating native chromatin. Although lysine crotonylation (Kcr) has recently been considered an important hPTM for the regulation of gene transcription, the interactors of Kcr still remain to be explored. Herein, we present a general approach relying upon a genetic code expansion system, APEX2 (engineered peroxidase)-mediated proximity labeling, and quantitative proteomics to profile interactomes of the selected hPTMs in living cells. We genetically fused APEX2 to the recombinant histone H3 with a crotonyl lysine inserted site specifically to generate APEX2-H3K9cr that incorporated into native chromatin. Upon activation, APEX2 triggered in vivo biotin labeling of H3K9cr interactors that can then be enriched with streptavidin beads and identified by mass spectrometry. Proteomic analysis further revealed the endogenous interactomes of H3K9cr and confirmed the reliability of the method. Moreover, DPF2 was identified as a candidate interactor, and the binding interaction of DPF2 to H3K9c was further characterized and verified. This study provides a novel strategy for the identification of hPTM interactomes in living cells, and we envision that this is key to elucidating epigenetic regulatory pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。