Diet-induced obesity is associated with altered expression of sperm motility-related genes and testicular post-translational modifications in a mouse model

饮食引起的肥胖与小鼠模型中精子活力相关基因表达改变和睾丸翻译后修饰有关

阅读:5
作者:Fang Wang, Houyang Chen, Ying Chen, Yimin Cheng, Jia Li, Liping Zheng, Xuhui Zeng, Tao Luo

Abstract

Obesity is a metabolic disease and its relation with male subfertility has aroused a growing concern. However, it is unclear whether gene expression and post-translational modifications (PTMs), two vital molecular mechanisms regulating cellular functions, are associated with obesity-induced male reproductive dysfunction. In this study, male obesity with compromised sperm motility was induced by a high-fat diet (HFD) using a mouse model. The expression of motility related-genes, the level of histone modifications, and the global profiles of post-translational modifications (PTMs), were examined in testes of HFD and control mice by quantitative real-time PCR and western blot, respectively. Outer dense fiber protein 2, a major component of outer dense fibers in the sperm tail, is the most obviously down-regulated gene out of 11 evaluated genes, showing a reduction of about 50% RNA level in testes of obese male mice compared with that in control mice. Semi-quantitative analysis of the western blot demonstrated that ∼56% enrichment of di-methylated histone (H)3 lysine (K)36, ∼59% enrichment of 2-hydroxyisobutyrylated H4K8, ∼32% decrease of propionylated H3K23, ∼33% decrease of crotonylated H4K8, and ∼45% decrease of acetylated H3K122 and H4K8 were detected in testes of male HFD mice compared with that in control mice. In addition, male obesity up-regulated the testicular levels of ubiquitination by ∼18%, tyrosine nitration by ∼20%, lysine succinylation by ∼25%, lysine benzoylation by ∼28%, lysine malonylation by ∼32%, lysine glutarylation by ∼36%, lysine propionylation by ∼42%, lysine 2-hydroxyisobutyrylation by ∼45%, and SUMO1 modification by ∼59%, and down-regulated the testicular levels of O-GlcNAcylation by ∼12%, lysine crotonylation by ∼22%, and lysine acetylation by 35%. These findings indicate that altered gene expression and PTMs are associated with the obesity-induced male reproductive dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。