Treatment of Parkinson's disease: nanostructured sol-gel silica-dopamine reservoirs for controlled drug release in the central nervous system

帕金森病的治疗:纳米结构溶胶-凝胶二氧化硅-多巴胺储存器用于控制中枢神经系统中的药物释放

阅读:8
作者:Tessy López, José L Bata-García, Dulce Esquivel, Emma Ortiz-Islas, Richard Gonzalez, Jorge Ascencio, Patricia Quintana, Gerko Oskam, Fernando J Alvarez-Cervera, Francisco J Heredia-López, José L Góngora-Alfaro

Conclusion

The major finding of the study was that intrastriatal silica-dopamine implants reversed the rotational asymmetry induced by apomorphine, a dopamine agonist, in hemiparkinsonian rats. No dyskinesias or other motor abnormalities were observed in animals implanted with silica or silica-dopamine.

Methods

Several samples were prepared by varying the wt% of dopamine added during the hydrolysis of tetraethyl orthosilicate. The silica-dopamine reservoirs were characterized by N(2) adsorption, scanning and transmission electron microscopy, and Fourier transform infrared spectroscopy. The in vitro release profiles were determined using ultraviolet visible absorbance spectroscopy. The textural analyses showed a maximum value for the surface area of 620 m(2)/g nanostructured silica materials. The stability of dopamine in the silica network was confirmed by infrared and (13)C-nuclear magnetic resonance spectroscopy. The reservoirs were evaluated by means of apomorphine-induced rotation behavior in hemiparkisonian rats.

Results

The in vitro dopamine delivery profiles indicate two regimes of release, a fast and sustained dopamine delivery was observed up to 24 hours, and after this time the rate of delivery became constant. Histologic analysis of formalin-fixed brains performed 24-32 weeks after reservoir implantation revealed that silica-dopamine implants had a reddish-brown color, suggesting the presence of oxidized dopamine, likely caused by the fixation procedure, while implants without dopamine were always translucent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。