Depth-resolved imaging of photosensitizer in the rodent brain using fluorescence laminar optical tomography

使用荧光层流光学断层扫描对啮齿动物脑中的光敏剂进行深度分辨成像

阅读:5
作者:Brandon Gaitan, Collin T Inglut, Yi Liu, Yu Chen, Huang-Chiao Huang

Aim

The purpose of this study is to quantify the benefit that fluorescence laminar optical tomography holds over 2-D imaging. We compared fluorescence laminar optical tomography with maximum intensity projection imaging to simulate 2-D imaging, as this would be the most similar and stringent comparison. Approach: A capillary filled with a photosensitizer was placed in a phantom and ex vivo rodent brains, with fluorescence laminar optical tomography and maximum intensity projection images obtained. The signal loss in the Z direction was quantified and compared to see which methodology could compensate better for signal loss caused by tissue attenuation.

Conclusions

Using fluorescence laminar optical tomography (FLOT), one can compensate for signal loss in deeper parts of tissue when imaging in ex vivo rodent brain tissue compared with maximum intensity projection imaging.

Results

The results demonstrated that we can reconstruct a capillary filled with benzoporphyrin derivative photosensitizers faithfully in phantoms and in ex vivo rodent brain tissues using fluorescence laminar optical tomography. We further demonstrated that we can better compensate for signal loss when compared with maximum intensity projection imaging. Conclusions: Using fluorescence laminar optical tomography (FLOT), one can compensate for signal loss in deeper parts of tissue when imaging in ex vivo rodent brain tissue compared with maximum intensity projection imaging.

Significance

Previous studies have been performed to image photosensitizers in certain organs and tumors using fluorescence laminar optical tomography. Currently, no work has yet been published to quantitatively compare the signal compensation of fluorescence laminar optical tomography with two-dimensional (2-D) imaging in tissues. Aim: The purpose of this study is to quantify the benefit that fluorescence laminar optical tomography holds over 2-D imaging. We compared fluorescence laminar optical tomography with maximum intensity projection imaging to simulate 2-D imaging, as this would be the most similar and stringent comparison. Approach: A capillary filled with a photosensitizer was placed in a phantom and ex vivo rodent brains, with fluorescence laminar optical tomography and maximum intensity projection images obtained. The signal loss in the Z direction was quantified and compared to see which methodology could compensate better for signal loss caused by tissue attenuation. Results: The results demonstrated that we can reconstruct a capillary filled with benzoporphyrin derivative photosensitizers faithfully in phantoms and in ex vivo rodent brain tissues using fluorescence laminar optical tomography. We further demonstrated that we can better compensate for signal loss when compared with maximum intensity projection imaging. Conclusions: Using fluorescence laminar optical tomography (FLOT), one can compensate for signal loss in deeper parts of tissue when imaging in ex vivo rodent brain tissue compared with maximum intensity projection imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。