MiR-145 protected the cell viability of human cerebral cortical neurons after oxygen-glucose deprivation by downregulating EPHA4

MiR-145 通过下调 EPHA4 保护人类大脑皮层神经元在缺氧缺糖后的细胞活力

阅读:6
作者:De Cai, Duncan Wei, Siqia Chen, Xianguang Chen, Shunxian Li, Wenjie Chen, Wenzhen He

Abstract

Our previous study indicated that microRNA 145 (miR-145) and its predicated target, erythropoietin-producing hepatoma (EPH) receptor A4 (EPHA4), was closely associated with ischemic stroke. In this study, we aimed to further explore their function in a model of oxygen-glucose deprivation (OGD). The expression of miR-145 in the blood of 44 patients with ischemic stroke and 37 normal controls was detected by qRT-PCR. After transfection with either the wild- or mutant-type pGL3-promoter EPHA4 3'UTR into the miR-145 mimic and miR-145 inhibitor, a dual-luciferase reporter assay was performed to explore the interaction between miR-145 and EPHA4. qRT-PCR and Western blot were performed to further explore the effects of miR-145 on EPHA4 expression after an miR-145 mimic, an miR-145 inhibitor or LV-sh-EPHA4 was transfected into cerebral cortical neurons. The expression of miR-145 was significantly upregulated in the blood of patients with ischemic stroke compared to that of normal controls. Dual-luciferase reporter assay, qRT-PCR and Western blot results indicated that miR-145 indeed targets EPHA4 through its 3'-UTR and regulates the expression level of EPHA4 at both the mRNA and protein levels. Moreover, the OGD model was successfully constructed, and miR-145 exerted a protective effects in cell viability in the OGD model by downregulating EPHA4. The expression of LOC105376244 could be regulated by the miR-145-EPHA4 interaction. MiR-145 exerted a protective effects in cell viability in the OGD model by downregulating EPHA4, which suggested their potential roles in ischemic stroke and requires further research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。