Essential amino acid infusions stimulate mammary expression of eukaryotic initiation factor 2Bε but milk protein yield is not increased during an imbalance

必需氨基酸输注可刺激乳腺表达真核起始因子 2Bε,但在失衡期间乳蛋白产量不会增加

阅读:4
作者:J Doelman, R V Curtis, M Carson, J J M Kim, J A Metcalf, J P Cant

Abstract

Essential amino acid (EAA) deficiencies and imbalances were created in lactating cows by using an infusion subtraction protocol to explore effects on milk protein yield and activity state of regulators of mRNA translation in the mammary glands. Six lactating cows on a diet of 11.2% protein were infused abomasally for 5d with saline, 563g/d of a complete EAA mix, or EAA without His, Met, Phe, or Trp in a 6×6 Latin square design. Infusion of complete and imbalanced EAA solutions increased mammalian target of rapamycin (mTOR) signaling in the mammary glands, as evidenced by higher ribosomal S6 kinase 1 (S6K1) phosphorylation compared with saline infusion. Total S6K1 abundance was decreased by imbalanced AA infusions. Except for the mixture lacking Phe, infusion of EAA, whether imbalanced or not, increased abundance of total eukaryotic initiation factor 2Bε (eIF2Bε). A correlation of 0.33 between phosphorylation state of S6K1 and total eIF2Bε abundance suggests that an mTOR-mediated upregulation of eIF2Bε translation occurred. Despite increased mTOR/eIF2Bε signaling, milk protein yields increased only with the complete EAA mixture compared with saline. Low plasma concentrations of His, Met, and Phe during their respective imbalances likely interfered with protein synthesis. Total abundance and phosphorylation state of eukaryotic initiation factor 2α were not responsible for the interference. Further study of eIF2Bε as a regulator of milk protein yield is warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。