Quinolinic acid impairs mitophagy promoting microglia senescence and poor healthspan in C. elegans: a mechanism of impaired aging process

喹啉酸损害线粒体自噬,促进秀丽隐杆线虫小胶质细胞衰老和健康寿命缩短:衰老过程受损的机制

阅读:6
作者:Anjila Dongol, Xi Chen, Peng Zheng, Zehra Boz Seyhan, Xu-Feng Huang

Abstract

Senescent microglia are a distinct microglial phenotype present in aging brain that have been implicated in the progression of aging and age-related neurodegenerative diseases. However, the specific mechanisms that trigger microglial senescence are largely unknown. Quinolinic acid (QA) is a cytotoxic metabolite produced upon abnormal activation of microglia. Brain aging and age-related neurodegenerative diseases have an elevated concentration of QA. In the present study, we investigated whether QA promotes aging and aging-related phenotypes in microglia and C. elegans. Here, we demonstrate for the first time that QA, secreted by abnormal microglial stimulation, induces impaired mitophagy by inhibiting mitolysosome formation and consequently promotes the accumulation of damaged mitochondria due to reduced mitochondrial turnover in microglial cells. Defective mitophagy caused by QA drives microglial senescence and poor healthspan in C. elegans. Moreover, oxidative stress can mediate QA-induced mitophagy impairment and senescence in microglial cells. Importantly, we found that restoration of mitophagy by mitophagy inducer, urolithin A, prevents microglial senescence and improves healthspan in C. elegans by promoting mitolysosome formation and rescuing mitochondrial turnover inhibited by QA. Thus, our study indicates that mitolysosome formation impaired by QA is a significant aetiology underlying aging-associated changes. QA-induced mitophagy impairment plays a critical role in neuroinflammation and age-related diseases. Further, our study suggests that mitophagy inducers such as urolithin A may offer a promising anti-aging strategy for the prevention and treatment of neuroinflammation-associated brain aging diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。