Sry-type HMG box 18 contributes to the differentiation of bone marrow-derived mesenchymal stem cells to endothelial cells

Sry型HMG盒18有助于骨髓间充质干细胞向内皮细胞分化

阅读:5
作者:Izuagie Attairu Ikhapoh, Christopher J Pelham, Devendra K Agrawal

Conclusion

Here we demonstrate that VEGF-165 mediates MSC differentiation into ECs via VEGFR-2-dependent induction of Sox18, which ultimately coordinates the transcriptional upregulation of specific markers of the EC phenotype.

Objective

Mesenchymal stem cells (MSC) have shown therapeutic potential to engraft and either differentiate into or support differentiation of vascular endothelial cells (EC), smooth muscle cells and cardiomyocytes in animal models of ischemic heart disease. Following intracoronary or transendocardial delivery of MSCs, however, only a small fraction of cells engraft and the majority of those persist as an immature cell phenotype. The goal of the current study was to decipher the molecular pathways and mechanisms that control MSC differentiation into ECs. Vascular endothelial growth factor (VEGF-165) treatment is known to enhance in vitro differentiation of MSCs into ECs. We tested the possible involvement of the Sry-type HMG box (Sox) family of transcription factors in this process. Method and

Results

MSCs were isolated from the bone marrow of Yucatan microswine and underwent a 10 day differentiation protocol. VEGF-165 (50ng/ml) treatment of MSCs in vitro induced a significant increase in the protein expression of VEGFR-2, Sox9 and Sox18, in addition to the EC markers PECAM-1, VE-cadherin and vWF, as determined by Western blot or flow cytometry. siRNA-mediated knockdown of Sox18, as opposed to Sox9, in MSCs prevented VEGF-165-mediated induction of EC markers and capillary tube formation. Inhibition of VEGFR-2 signaling (SC-202850) reduced Sox18 and reduced VEGF-165-induced differentiation of MSCs to ECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。