Neuregulin 1 (NRG1) modulates oocyte nuclear maturation during IVM and improves post-IVF embryo development

神经调节蛋白 1 (NRG1) 调节 IVM 期间卵母细胞核成熟并改善 IVF 后胚胎发育

阅读:11
作者:Thaisy Tino Dellaqua, Renan Aparecido Vígaro, Ludimila Cardoso Zoccal Janini, Mariabeatrice Dal Canto, Mario Mignini Renzini, Valentina Lodde, Alberto Maria Luciano, Jose Buratini

Abstract

Oocyte in vitro maturation (IVM) is still a major challenge in human and animal assisted reproduction. Gradual instead of abrupt activation of the ovulatory cascade during IVM has been proposed to enhance nuclear-cytoplasmic synchrony and cumulus-oocyte communication, thus favoring oocyte developmental competence. Herein, we assessed the effects of neuregulin 1 (NRG1), an EGF-like factor that modulates EGFR signaling, on oocyte nuclear maturation dynamics, cumulus expansion and expression of mRNAs regulating these processes during IVM, as well as on post-IVF embryo development following AREG-stimulated IVM in cattle. In experiment 1, cumulus-oocyte complexes (COCs) were subjected to IVM with graded doses of NRG1 (1, 10 or 100 ng/mL) for 6, 9, 12, 20, and 24 h, after which oocyte nuclear status and cumulus mRNA expression were assessed. At 6 h of IVM, NRG1 at 1 ng/mL significantly decreased the percentage of GVBD (germinal vesicle breakdown) oocytes without altering later meiotic dynamics or the percentage of oocytes achieving meiosis II. In experiment 2, adding NRG1 (1 ng/mL) to the IVM medium did not affect cumulus expansion but increased the percentage of expanded and hatched blastocysts, and blastocyst total cell number following IVF/IVC. NRG1 decreased EGFR mRNA abundance while increasing NPR2 and PTX3 mRNA levels at 9 h, and TNFAIP6 mRNA abundance at 20 h of IVM. This is the first study that reports the modulatory effect of NGR1 during oocyte maturation in a mono-ovulatory species and demonstrates that this action may be applied during IVM to improve post-IVF embryo development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。