The H2A.Z-KDM1A complex promotes tumorigenesis by localizing in the nucleus to promote SFRP1 promoter methylation in cholangiocarcinoma cells

H2A.Z-KDM1A 复合物通过定位于细胞核中促进胆管癌细胞中的 SFRP1 启动子甲基化来促进肿瘤发生

阅读:6
作者:Qi Wang #, Yongqiang Qi #, Fei Xiong, Da Wang, Bing Wang, Yongjun Chen

Background

Intrahepatic cholangiocarcinoma (ICC), originating from the bile ducts, is the second most common primary liver malignancy, and its incidence has recently increased. H2A.Z, a highly conserved H2A variant, is emerging as a key regulatory molecule in cancer. However, its underlying mechanism of action in ICC cells remains unclear.

Conclusions

Our findings reveal that H2A.Z inhibits SFRP1 expression through chromatin modification in the context of ICC by forming a complex with KDM1A in the nucleus.

Methods

Here, we examined the expression of H2A.Z and SFRP1 in normal intrahepatic cholangiocytes, ICC cell lines, ICC tissue microarrays, and fresh specimens. The correlations between H2A.Z or SFRP1 expression and clinical features were analysed. The overall survival rate was analysed based on H2A.Z and SFRP1 expression. Immunoprecipitation was used to analyse the recruitment of KDM1A, and ChIP sequencing and BSP were used to analyse the enrichment of methylation-related molecules such as H3K4me1 and H3K4me2 in the SFRP1 promoter and reveal the underlying mechanisms. Knockdown and rescue experiments were used to determine the potential mechanism by which H2A.Z and SFRP1 promote tumorigenesis in vitro.

Results

We showed that upregulation of H2A.Z expression is linked to downregulation of SFRP1 expression in ICC tissues and poor overall survival in patients with ICC. H2A.Z interacted with KDM1A in the nucleus to bind to the -151 ~ -136 bp region upstream of the SFRP1 promoter to increase its demethylation in ICC cells. Functionally, H2A.Z silencing inhibited the proliferation and invasion of ICC cells, and these effects were mitigated by SFRP1 silencing in ICC cells. Conclusions: Our findings reveal that H2A.Z inhibits SFRP1 expression through chromatin modification in the context of ICC by forming a complex with KDM1A in the nucleus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。