Microbiota regulates life-cycle transition and nematocyte dynamics in jellyfish

微生物群调节水母的生命周期转变和刺细胞动态

阅读:7
作者:Saijun Peng, Lijing Ye, Yongxue Li, Fanghan Wang, Tingting Sun, Lei Wang, Wenjin Hao, Jianmin Zhao, Zhijun Dong

Abstract

Jellyfish represent one of the most basal animal groups with complex life cycles. The polyp-to-medusa transition, termed strobilation, is the pivotal process that determines the switch in swimming behavior and jellyfish blooms. Their microbiota plays an essential role in strobilation. Here, we investigated microbiota-mediated host phenotype dynamics during strobilation in the jellyfish Aurelia coerulea via antibiotic-induced microbiome alteration. Microbial depletion delayed the initiation of strobilation and resulted in fewer segments and ephyrae, which could be restored via microbial recolonization. Jellyfish-associated cyanobacteria, which were eliminated by antibiotics in the polyp stage, had the potential to supply retinal and trigger the retinoic acid signaling cascade, which drove the strobilation process. The microbiota regulated nematocyte development and differentiation, influencing the feeding and growth of the jellyfish. The findings improve our understanding of jellyfish-microbe interactions and provide new insights into the role of the microbiota in shaping feeding behavior through nematocyte dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。