Serine racemase deficiency attenuates choroidal neovascularization and reduces nitric oxide and VEGF levels by retinal pigment epithelial cells

丝氨酸消旋酶缺乏可减弱脉络膜新生血管并降低视网膜色素上皮细胞的一氧化氮和 VEGF 水平

阅读:5
作者:Haiyan Jiang, Mengjuan Wu, Yimei Liu, Liping Song, Shifeng Li, Xianwei Wang, Yun-Feng Zhang, Junxu Fang, Shengzhou Wu

Abstract

Choroidal neovascularization (CNV) is a leading cause of blindness in age-related macular degeneration. Production of vascular endothelial growth factor (VEGF) and macrophage recruitment by retinal pigment epithelial cells (RPE) significantly contributes to the process of CNV in an experimental CNV model. Serine racemase (SR) is expressed in retinal neurons and glial cells, and its product, d-serine, is an endogenous co-agonist of N-methyl-d-aspartate receptor. Activation of the receptor results in production of nitric oxide (. NO), a molecule that promotes retinal and choroidal neovascularization. These observations suggest possible roles of SR in CNV. With laser-injured CNV mice, we found that inactivation of SR-coding gene (Srrnull ) significantly reduced CNV volume, neovascular density, and invading macrophages. We exploited the underlying mechanism in vivo and ex vivo. RPE from wild-type (WT) mice expressed SR. To explore the possible downstream target of SR inactivation, we showed that choroid/RPE homogenates extracted from laser-injured Srrnull mice contained less inducible nitric oxide synthase and decreased phospho-VEGFR2 compared to amounts in WT mice. In vitro, inflammation-primed WT RPEs expressed more inducible NOS, produced more. NO and VEGF than did inflammation-primed Srrnull RPEs. When co-cultured with inflammation-primed Srrnull RPE, significantly fewer RF/6A-a cell line of choroidal endothelial cell, migrated to the opposite side of the insert membrane than did cells co-cultured with pre-treated WT RPE. Altogether, SR deficiency reduces RPE response to laser-induced inflammatory stimuli, resulting in decreased production of a cascade of pro-angiogenic cytokines, including. NO and VEGF, and reduced macrophage recruitment, which contribute synergistically to attenuated angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。