Protective mechanism of Taxifolin for chlorpyrifos neurotoxicity in BV2 cells

紫杉叶素对BV2细胞毒死蜱神经毒性的保护机制

阅读:5
作者:Chen Zhang, Jichun Zhan, Mingyi Zhao, Hongmei Dai, Yuanying Deng, Wenjuan Zhou, Lingling Zhao

Abstract

Chlorpyrifos (CPF) is an organophosphorus pesticide that can damage the central nervous system in children upon exposure. Taxifolin (Tax) exerts protective effects against neurotoxins; however, the mechanism has not yet been illustrated. The current study used BV2 cells to investigate the protective mechanism underlying the organophosphorus pesticide taxifolin on CPF-induced neurotoxicity, which might present a therapeutic potential for the prevention and treatment of the nervous system diseases in children. BV2 cells were randomly divided into 4 groups: DMSO, CPF, Tax, and Tax + CPF. The viability, morphocytology, oxidative stress, inflammatory reaction, and autophagocytosis have been studied in the cells using Western blot analysis, CCK-8 assay, enzyme-linked immunosorbent assay, and immunofluorescence to estimate the level of LC3 II. As a result, CPF was found to exert a significant toxic effect on BV2 cells that was characterized by rounded cell body, atrophic synapse, poor adhesion, cell aggregation, inflammation, oxidative reaction, and autophagy. Tax treatment has a protective effect on CPF-induced neurotoxicity via downregulation of ROS, TNF-α, IFN-γ, and p62 levels and increased LC3 II level, which in turn, improved the viability and activity of BV2 cells. This phenomenon suggested that Tax can reduce the inflammation and oxidative stress and promote autophagy. Furthermore, the current study suggested that the protective mechanism of Tax on CPF-induced BV2 cell toxicity was via up-regulation of pAMPK level and activation of Nrf2/HO-1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。