Echinacoside ameliorates doxorubicin‑induced cardiac injury by regulating GPX4 inhibition‑induced ferroptosis

松果菊苷通过调节 GPX4 抑制诱导的铁死亡来改善阿霉素引起的心脏损伤

阅读:22
作者:Yan Ma, Xiaoli Yang, Nianxin Jiang, Cheng Lu, Jiehan Zhang, Shaowei Zhuang

Abstract

Echinacoside (ECH) is a compound derived from the natural herbs Cistanche and Echinacea, which has considerable protective effects on heart failure (HF). HF is characterized by myocardial damage and abnormal ferroptosis. Glutathione peroxidase 4 (GPX4) is an important regulator of ferroptosis, which plays a role in ferroptosis-related diseases. Despite this, the therapeutic mechanisms of ECH against HF remain unknown. Therefore, the aim of the present study was to investigate the cardioprotective effect and underlying mechanisms of ECH in the treatment of doxorubicin (DOX)-induced chronic HF (CHF). Cell proliferation was assessed using a CCK-8 assay. Furthermore, cardiac cell injury and oxidative stress were determined by measuring the lactate dehydrogenase (LDH), malondialdehyde (MDA), and glutathione (GSH) levels. The levels of Fe2+ and lipid reactive oxygen species (ROS), and expression of the biomarkers of ferroptosis, including GPX4 and prostaglandin-endoperoxide synthase 2 (PTGS2), were measured to examine cardiomyocyte ferroptosis. Additionally, RNA interference was used to silence Gpx4. In vitro and in vivo, ECH considerably reduced the MDA and LDH levels and increased the GSH level, thereby attenuating DOX-induced cardiac injury and oxidative stress. Meanwhile, ECH treatment decreased the lipid ROS levels and PTGS2 expression while increasing GPX4 expression, thereby alleviating DOX-induced cardiomyocyte ferroptosis. Moreover, knockdown of Gpx4 inhibited the protective effects of ECH on DOX-induced accumulation of lipid ROS in cardiomyocytes. These findings indicate that ECH can reduce DOX-induced cardiac injury by inhibiting ferroptosis via GPX4, highlighting its value as a potentially valuable therapeutic target in the management of CHF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。