Temporal profiling of Kv1.3 channel expression in brain mononuclear phagocytes following ischemic stroke

缺血性中风后脑单核吞噬细胞中 Kv1.3 通道表达的时间分析

阅读:5
作者:Tianwen Gao, Syed Ali Raza, Supriya Ramesha, Ngozi V Nwabueze, Amelia J Tomkins, Lihong Cheng, Hailian Xiao, Manuel Yepes, Srikant Rangaraju

Background

Microglia and CNS-infiltrating monocytes/macrophages (CNS-MPs) perform pro-inflammatory and protective anti-inflammatory functions following ischemic stroke. Selective inhibition of pro-inflammatory responses can be achieved by Kv1.3 channel blockade, resulting in a lower infarct size in the transient middle cerebral artery occlusion (tMCAO) model. Whether beneficial effects of Kv1.3 blockers are mediated by targeting microglia or CNS-infiltrating monocytes/macrophages remains unclear.

Conclusions

We conclude that resident microglia and a subset of CD45highLy6clow CNS-MPs are the likely cellular targets of Kv1.3 blockers and the delayed phase of neuroinflammation is the optimal therapeutic window for Kv1.3 blockade in ischemic stroke.

Methods

In the 30-min tMCAO mouse model, we profiled functional cell-surface Kv1.3 channels and phagocytic properties of acutely isolated CNS-MPs at various timepoints post-reperfusion. Kv1.3 channels were flow cytometrically detected using fluorescein-conjugated Kv1.3-binding peptide ShK-F6CA as well as by immunohistochemistry. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was performed to measure Kv1.3 (Kcna3) and Kir2.1 (Kcnj2) gene expression. Phagocytosis of 1-μm microspheres by acutely isolated CNS-MPs was measured by flow cytometry.

Results

In flow cytometric assays, Kv1.3 channel expression by CD11b+ CNS-MPs was increased between 24 and 72 h post-tMCAO and decreased by 7 days post-tMCAO. Increased Kv1.3 expression was restricted to CD11b+CD45lowLy6clow (microglia) and CD11b+CD45highLy6Clow CNS-MPs but not CD11b+CD45highLy6chigh inflammatory monocytes/macrophages. In immunohistochemical studies, Kv1.3 protein expression was increased in Iba1+ microglia at 24-48 h post-tMCAO. No change in Kv1.3 mRNA in CNS-MPs was observed following tMCAO. Conclusions: We conclude that resident microglia and a subset of CD45highLy6clow CNS-MPs are the likely cellular targets of Kv1.3 blockers and the delayed phase of neuroinflammation is the optimal therapeutic window for Kv1.3 blockade in ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。