Vapor delivery of plant essential oils alters pyrethroid efficacy and detoxification enzyme activity in mosquitoes

植物精油的蒸汽输送会改变蚊子体内拟除虫菊酯的功效和解毒酶的活性

阅读:7
作者:Scott T O'Neal, Ellis J Johnson, Leslie C Rault, Troy D Anderson

Abstract

The use of synthetic insecticides to limit the spread of mosquito-borne disease faces a number of significant challenges, including insecticide resistance, concerns related to the environmental impact of widespread insecticide use, as well as slowed development of new insecticide chemistries. One important alternative to broadcast insecticides is the use of personal protection strategies to limit contact with vector species, including the use of spatial repellents that can employ synthetic pyrethroids or botanical products to effect control. A currently underexplored area of research involves the investigation of botanical products for their potential to serve as insecticide synergists when delivered as a vapor. This study describes the development of an assay that facilitates the screening of essential oils delivered as a vapor for enhancement of deltamethrin efficacy in both pyrethroid-susceptible and -resistant strains of the vector mosquito species Aedes aegypti. Deltamethrin efficacy was significantly increased following exposure to cinnamon (Cinnamomum cassia), tagetes (Tagetes bipinnata), and sage (Salvia officinalis) oils, while efficacy was significantly decreased following exposure to amyris (Amyris balsamifera) oil. These effects appeared to be mediated by changes in cytochrome P450 activity. This work demonstrates that some plant-derived essential oils delivered as a vapor are capable of increasing the efficacy of deltamethrin similar to classical synergists such as piperonyl butoxide, supporting the use of a real world delivery method instead of traditional contact exposure studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。