The Cholangiocyte Adenosine-IL-6 Axis Regulates Survival During Biliary Cirrhosis

胆管细胞腺苷-IL-6 轴调节胆汁性肝硬化期间的生存

阅读:7
作者:Elise G Lavoie, Michel Fausther, Jessica R Goree, Jonathan A Dranoff

Abstract

Epithelial response to injury is critical to the pathogenesis of biliary cirrhosis, and IL-6 has been suggested as a mediator of this phenomenon. Several liver cell types can secrete IL-6 following activation by various signaling molecules including circulating adenosine. The aims of this study were to assess whether adenosine can induce IL-6 secretion by cholangiocytes via the A2b adenosine receptor (A2bAR) and to determine the effect of A2bAR-sensitive IL-6 release on injury response in biliary cirrhosis. Human normal cholangiocyte H69 cells were used for in vitro studies to determine the mechanism by which adenosine and the A2bAR induce release of IL-6. In vivo, control and A2bAR-deficient mice were used to determine the roles of A2bAR-sensitive IL-6 release in biliary cirrhosis induced by common bile duct ligation (BDL). Additionally, the response to exogenous IL-6 was assessed in C57BL/6 and A2bAR-deficient mice. Adenosine induced IL-6 mRNA expression and protein secretion via A2bAR activation. Although activation of A2bAR induced cAMP and intracellular Ca2+ signals, only the Ca2+ signals were linked to IL-6 upregulation. After BDL, A2bAR-deficient mice have impaired survival, which is further impaired by exogenous IL-6; however, decreased survival is not due to changes in fibrosis and no changes in inflammatory cells. Exogenous IL-6 is associated with the increased presence of bile infarcts. Extracellular adenosine induces cholangiocyte IL-6 release via the A2bAR. This signaling pathway is important in the pathogenesis of injury response in biliary cirrhosis but does not alter fibrosis. Adenosine upregulates IL-6 release by cholangiocytes via the A2bAR in a calcium-sensitive fashion. Mice deficient in A2bAR experience impaired survival after biliary cirrhosis induced by common bile duct ligation independent of changes in fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。