Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer

癌症遗传学指导发现用于前列腺癌诊断和预后的血清生物标志物特征

阅读:6
作者:Igor Cima, Ralph Schiess, Peter Wild, Martin Kaelin, Peter Schüffler, Vinzenz Lange, Paola Picotti, Reto Ossola, Arnoud Templeton, Olga Schubert, Thomas Fuchs, Thomas Leippold, Stephen Wyler, Jens Zehetner, Wolfram Jochum, Joachim Buhmann, Thomas Cerny, Holger Moch, Silke Gillessen, Ruedi Aebersold,

Abstract

A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog (PTEN) tumor-suppressor gene inactivation. In the first stage of our approach, we identified 775 N-linked glycoproteins from sera and prostate tissue of wild-type and Pten-null mice. Using label-free quantitative proteomics, we showed that Pten inactivation leads to measurable perturbations in the murine prostate and serum glycoproteome. Following bioinformatic prioritization, in a second stage we applied targeted proteomics to detect and quantify 39 human ortholog candidate biomarkers in the sera of PCa patients and control individuals. The resulting proteomic profiles were analyzed by machine learning to build predictive regression models for tissue PTEN status and diagnosis and grading of PCa. Our approach suggests a general path to rational cancer biomarker discovery and initial validation guided by cancer genetics and based on the integration of experimental mouse models, proteomics-based technologies, and computational modeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。