Insight into the Neuroprotective Effect of Genistein-3'-Sodium Sulfonate Against Neonatal Hypoxic-Ischaemic Brain Injury in Rats by Bioinformatics

从生物信息学角度探究染料木黄酮-3'-磺酸钠对大鼠新生儿缺氧缺血性脑损伤的神经保护作用

阅读:8
作者:Ting Xie, Liyan Shuang, Gaigai Liu, Shanshan Zhao, Zhidong Yuan, Hao Cai, Lixia Jiang, Zhihua Huang

Abstract

Therapeutic hypothermia (TH) is the only intervention approved for the treatment of neonatal hypoxic-ischaemic encephalopathy (HIE), but its treatment window is narrow (within 6 h after birth), and its efficacy is not ideal. Thus, alternative treatments are urgently needed. Our previous studies showed that genistein-3'-sodium sulfonate (GSS), a derivative of genistein (Gen), has a strong neuroprotective effect in rats with ischaemic stroke, but its role in HIE is unclear. A hypoxia-ischaemia (HI) brain injury model was established in neonatal male Sprague‒Dawley (SD) rats. Twenty-four hours after reperfusion, rats treated with GSS were assessed for cerebral infarction, neurological function, and neuronal damage. RNA-Seq and bioinformatics analysis were used to explore differentially expressed genes (DEGs) and regulated signalling pathways, which were subsequently validated by Western blotting and immunofluorescence. In this study, we found that GSS not only significantly reduced the size of brain infarcts and alleviated nerve damage in rats with HIE but also inhibited neuronal loss and degeneration in neonatal rats with HIE. A total of 2170 DEGs, of which 1102 were upregulated and 1068 were downregulated, were identified in the GSS group compared with the HI group. In an analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) categories, the downregulated DEGs were significantly enriched in the pathways "Phagosome", "NF-κB signalling", and "Complement and coagulation cascades", amongst others. Meanwhile, the upregulated DEGs were significantly enriched in the pathways "Neurodegeneration", "Glutamatergic synapse", and "Calcium signalling pathway", amongst others. These results indicate that GSS intervenes in the process of HIE-induced brain injury by participating in multiple pathways, which suggests potential candidate drugs for the treatment of HIE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。