A truncating SOD1 mutation, p.Gly141X, is associated with clinical and pathologic heterogeneity, including frontotemporal lobar degeneration

截短型 SOD1 突变 p.Gly141X 与临床和病理异质性有关,包括额颞叶变性

阅读:6
作者:Masataka Nakamura, Kevin F Bieniek, Wen-Lang Lin, Neill R Graff-Radford, Melissa E Murray, Monica Castanedes-Casey, Pamela Desaro, Matthew C Baker, Nicola J Rutherford, Janice Robertson, Rosa Rademakers, Dennis W Dickson, Kevin B Boylan

Abstract

Amyotrophic lateral sclerosis (ALS) is a degenerative disorder affecting upper and lower motor neurons, but it is increasingly recognized to affect other systems, with cognitive impairment resembling frontotemporal dementia (FTD) in some patients. We report clinical and pathologic findings of a family with ALS due to a truncating mutation, p.Gly141X, in copper/zinc superoxide dismutase (SOD1). The proband presented clinically with FTD and later showed progressive motor neuron disease, while all other family members had early-onset and rapidly progressive ALS without significant cognitive deficits. Pathologic examination of both the proband and her daughter revealed degeneration of corticospinal tracts and motor neurons in brain and spinal cord compatible with ALS. On the other hand, the proband also had neocortical and limbic system degeneration with pleomorphic neuronal cytoplasmic inclusions. Extramotor pathology in her daughter was relatively restricted to the hypothalamus and extrapyramidal system, but not the neocortex. The inclusions in the proband and her daughter were immunoreactive for SOD1, but negative for TAR DNA-binding protein of 43 kDa (TDP-43). In the proband, a number of the neocortical inclusions were immunopositive for α-internexin, initially suggesting a diagnosis of atypical FTLD, but there was no evidence of fused in sarcoma (FUS) immunoreactivity, which is often detected in atypical FTLD. Analogous to atypical FTLD, neuronal inclusions had variable co-localization of SOD1 and α-internexin. The current classification of FTLD is based on the major constituent protein: FTLD-tau, FTLD-TDP-43, and FTLD-FUS. The proband in this family indicates that SOD1, while rare, can also be the substrate of FTLD, in addition to the more common presentation of ALS. The explanation for clinical and pathologic heterogeneity of SOD1 mutations, including the p.Gly141X mutation, remains unresolved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。