Essential roles of the cytokine oncostatin M in crosstalk between muscle fibers and immune cells in skeletal muscle after aerobic exercise

细胞因子抑癌素 M 在有氧运动后骨骼肌纤维与免疫细胞之间的串扰中发挥的重要作用

阅读:7
作者:Tadasuke Komori, Yoshihiro Morikawa

Abstract

Crosstalk between muscle fibers and immune cells is well known in the processes of muscle repair after exercise, especially resistance exercise. In aerobic exercise, however, this crosstalk is not fully understood. In the present study, we found that macrophages, especially anti-inflammatory (M2) macrophages, and neutrophils accumulated in skeletal muscles of mice 24 h after a single bout of an aerobic exercise. The expression of oncostatin M (OSM), a member of the interleukin 6 family of cytokines, was also increased in muscle fibers immediately after the exercise. In addition, we determined that deficiency of OSM in mice inhibited the exercise-induced accumulation of M2 macrophages and neutrophils, whereas intramuscular injection of OSM increased these immune cells in skeletal muscles. Furthermore, the chemokines related to the recruitment of macrophages and neutrophils were induced in skeletal muscles after aerobic exercise, which were attenuated in OSM-deficient mice. Among them, CC chemokine ligand 2, CC chemokine ligand 7, and CXC chemokine ligand 1 were induced by OSM in skeletal muscles. Next, we analyzed the direct effects of OSM on the skeletal muscle macrophages, because the OSM receptor β subunit was expressed predominantly in macrophages in the skeletal muscle. OSM directly induced the expression of these chemokines and anti-inflammatory markers in the skeletal muscle macrophages. From these findings, we conclude that OSM is essential for aerobic exercise-induced accumulation of M2 macrophages and neutrophils in the skeletal muscle partly through the regulation of chemokine expression in macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。