Src-mediated phosphorylation of the ribosome biogenesis factor hYVH1 affects its localization, promoting partitioning to the 60S ribosomal subunit

Src 介导的核糖体生物合成因子 hYVH1 磷酸化影响其定位,促进其分配到 60S 核糖体亚基

阅读:10
作者:Ashley A DaDalt, Christopher A Bonham, Griffin P Lotze, Adrian A Luiso, Panayiotis O Vacratsis

Abstract

Yeast VH1-related phosphatase (YVH1) (also known as DUSP12) is a member of the atypical dual-specificity phosphatase subfamily. Although no direct substrate has been firmly established, human YVH1 (hYVH1) has been shown to protect cells from cellular stressors, regulate the cell cycle, disassemble stress granules, and act as a 60S ribosome biogenesis factor. Despite knowledge of hYVH1 function, further research is needed to uncover mechanisms of its regulation. In this study, we investigate cellular effects of a Src-mediated phosphorylation site at Tyr179 on hYVH1. We observed that this phosphorylation event attenuates localization of hYVH1 to stress granules, enhances shuttling of hYVH1 to the nucleus, and promotes hYVH1 partitioning to the 60S ribosomal subunit. Quantitative proteomics reveal that Src coexpression with hYVH1 reduces formation of ribosomal species that represent stalled intermediates through the alteration of associating factors that mediate translational repression. Collectively, these results implicate hYVH1 as a novel Src substrate and provide the first demonstrated role of tyrosine phosphorylation regulating the activity of a YVH1 ortholog. Moreover, the ribosome proteome alterations point to a collaborative function of hYVH1 and Src in maintaining translational fitness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。