Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines

上皮-间质转化在两种独立的乳腺癌细胞系中诱导类似的代谢改变

阅读:11
作者:Yuvabharath Kondaveeti, Irene K Guttilla Reed, Bruce A White

Abstract

Epithelial-mesenchymal transition (EMT) induces invasive properties in epithelial tumors and promotes metastasis. Although EMT-mediated cellular and molecular changes are well understood, very little is known about EMT-induced metabolic changes. HER2-positive BT-474 breast cancer cells were induced to undergo a stable EMT using mammosphere culture, as previously described by us for the ERα-positive MCF-7 breast cancer cells. Two epithelial breast cancer cell lines (BT-474 and MCF-7) were compared to their respective EMT-derived mesenchymal progeny (BT-474(EMT) and MCF-7(EMT)) for changes in metabolic pathways including glycolysis, glycogen metabolism, anabolic pathways and gluconeogenesis. Both EMT-derived cells displayed enhanced aerobic glycolysis along with the overexpression of specific glucose transporters, lactate dehydrogenase isoforms, monocarboxylate transporters and glycogen phosphorylase isoform. In contrast, both EMT-derived cells suppressed the expression of crucial enzymes in anabolic pathways and gluconeogenesis. STAT3, a transcription factor involved in tumor initiation and progression, plays a role in the EMT-related changes in the expression of specific enzymes and transporters. This study provides a broad overview of similar metabolic changes induced by EMT in two independent breast cancer cell lines. These metabolic changes may provide novel therapeutic targets for metastatic breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。