ALA-PDT promotes the death and contractile capacity of hypertrophic scar fibroblasts through inhibiting the TGF-β1/Smad2/3/4 signaling pathway

ALA-PDT通过抑制TGF-β1/Smad2/3/4信号通路促进增生性瘢痕成纤维细胞死亡及收缩能力

阅读:7
作者:Zilu Qu, Yao Chen, Kun Du, JiaXi Qiao, Liuqing Chen, Jinbo Chen, Li Wei

Background

Hypertrophic scars, an abnormal wound-healing response to burn injuries, are characterized by massive fibroblast proliferation and excessive deposition of extracellular matrix and collagen. 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is a promising therapy for hypertrophic scar, details of the mechanisms remain to be elucidated. In this study, we aimed to investigate the molecular mechanisms involved in ALA-PDT against hypertrophic scar fibroblasts.

Conclusions

Our results provide evidence that ALA-PDT can inhibit fibroblast contraction and promote cell death by inhibiting the activation of the TGF-β1 signaling pathway that mediates hypertrophic scar formation, which may be the basis for the efficacy of ALA-PDT in the treatment of hypertrophic scars.

Methods

The morphologies of hypertrophic scar fibroblasts (HSFs) treated with ALA-PDT were observed under a light microscopy. The viability of HSFs was detected using the CCK-8 assay. HSFs-populated collagen gel contraction assays were conducted to examine the fibroblast contractility and the cytotoxicity of HSFs in 3D collagen tissues were observed using confocal microscopy. The effect of ALA-PDT on TGF-β1/Smad2/3/4 signaling pathway activation and effector gene expression were verified by immunoprecipitation, western blot and real-time quantitative PCR analysis.

Results

We observed significant changes in cell morphology after ALA-PDT treatment of HSFs. As ALA concentration and light dose increased, the viability of HSFs significantly decreased. ALA-PDT can significantly alleviate the contractile capacity and promote the death of HSFs induced by TGF-β1 treatment in a three-dimensional collagen culture model. TGF-β1 treatment of HSFs can significantly induce phosphorylation of Smad2/3 (p-Smad2/3) in whole cells, as well as p-Smad2/3 and Smad4 proteins into the nucleus and increase the mRNA levels of collagen 1/3 and α-SMA. ALA-PDT hampers the TGF-β1-Smad2/3/4 signaling pathway activation by inducing K48-linked ubiquitination and degradation of Smad4. Conclusions: Our results provide evidence that ALA-PDT can inhibit fibroblast contraction and promote cell death by inhibiting the activation of the TGF-β1 signaling pathway that mediates hypertrophic scar formation, which may be the basis for the efficacy of ALA-PDT in the treatment of hypertrophic scars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。