Multifrequency Optomechanical Stiffness Measurement of Single Adherent Cells on a Solid Substrate with High Throughput

高通量固体基质上单个粘附细胞的多频率光机械刚度测量

阅读:3
作者:Ali Mehrnezhad, Kidong Park

Abstract

Mechanical properties of a cell reflect its biological and pathological conditions and there have been active research efforts to develop high-throughput platforms to mechanically characterize single cells. Yet, many of these research efforts are focused on suspended cells and use a flow-through configuration. In this paper, the stiffness of single adherent cells are optomechanically characterized using the vibration-induced phase shift (VIPS) without detaching them from the substrate. With the VIPS measurements, the frequency and amplitude dependency of the cell stiffness is investigated and statistically significant difference in the cell stiffness is confirmed after exposure to various drugs affecting cytoskeleton network. Furthermore, a 3-dimensional finite element model of a cell on a vibrating substrate is developed to extract the mechanical property from the measured VIPS. The developed technique can characterize the mechanical properties of single adherent cells at multiple frequencies with high throughput and will provide valuable clues in understanding cell mechanics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。