Immuno-SPR biosensor for the detection of Brucella abortus

用于检测流产布鲁氏菌的免疫SPR生物传感器

阅读:5
作者:Laura Pasquardini, Nunzio Cennamo, Francesco Arcadio, Chiara Perri, Alessandro Chiodi, Girolamo D'agostino, Luigi Zeni

Abstract

A proof of principle biosensor for the Brucella abortus recognition onsite is presented. The system is based on a plasmonic optical fiber probe functionalized with an oriented antibody layer immobilized on a short polyethyleneglycol (PEG) interface through carbodiimide chemistry and protein G as an intermediate layer. The biosensor is inserted in a holder built in 3D printing technology, obtaining a custom holder useful for housing the sample to be measured and the equipment. The removable sensor chip is a low-cost Surface Plasmon Resonance (SPR) platform based on D-shaped plastic optical fibers (POFs), built-in in 3D printed connectors, used here for the first time to detect bacteria via a bio-receptor layer specific for its membrane protein. The performances of the biosensor in Brucella abortus recognition are tested by using two different SPR-POF probes combined with the same bio-receptor layer. The best sensor configuration has presented a sensitivity at low concentrations of one order of magnitude greater than the other. A limit of detection (LoD) of 2.8 bacteria/mL is achieved well competitive with other systems but without the need for amplification or special sample treatments. Specificity has been tested using Salmonella bacteria, and reproducibility, regenerability and stability are moreover evaluated. These experimental results pave the way for building an efficient and specific biosensor system for Brucella abortus detection onsite and in a few minutes. Moreover, the proposed POF-based SPR biosensor device, with respect to the already available technologies, could be a Point-of-care-test (POCT), simple to use, small-size and portable, low-cost, don't necessary of a microfluidic system, and can be connected to the Internet (IoT).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。