Microglial cell hyper-ramification and neuronal dendritic spine loss in the hippocampus and medial prefrontal cortex in a mouse model of PTSD

创伤后应激障碍 (PTSD) 小鼠模型中海马和内侧前额皮质中的小胶质细胞过度分支和神经元树突棘丢失

阅读:7
作者:Kristie Leigh Smith, Mustafa S Kassem, David J Clarke, Michael P Kuligowski, Miguel A Bedoya-Pérez, Stephanie M Todd, Jim Lagopoulos, Maxwell R Bennett, Jonathon C Arnold

Abstract

Few animal models exist that successfully reproduce several core associative and non-associative behaviours relevant to post-traumatic stress disorder (PTSD), such as long-lasting fear reactions, hyperarousal, and subtle attentional and cognitive dysfunction. As such, these models may lack the face validity required to adequately model pathophysiological features of PTSD such as CNS grey matter loss and neuroinflammation. Here we aimed to investigate in a mouse model of PTSD whether contextual fear conditioning associated with a relatively high intensity footshock exposure induces loss of neuronal dendritic spines in various corticolimbic brain regions, as their regression may help explain grey matter reductions in PTSD patients. Further, we aimed to observe whether these changes were accompanied by alterations in microglial cell number and morphology, and increased expression of complement factors implicated in the mediation of microglial cell-mediated engulfment of dendritic spines. Adult male C57Bl6J mice were exposed to a single electric footshock and subsequently underwent phenotyping of various PTSD-relevant behaviours in the short (day 2-4) and longer-term (day 29-31). 32 days post-exposure the brains of these animals were subjected to Golgi staining of dendritic spines, microglial cell Iba-1 immunohistochemistry and immunofluorescent staining of the complement factors C1q and C4. Shock exposure promoted a lasting contextual fear response, decreased locomotor activity, exaggerated acoustic startle responses indicative of hyperarousal, and a short-term facilitation of sensorimotor gating function. The shock triggered loss of dendritic spines on pyramidal neurons was accompanied by increased microglial cell number and complexity in the medial prefrontal cortex and dorsal hippocampus, but not in the amygdala. Shock also increased expression of C1q in the pyramidal layer of the CA1 region of the hippocampus but not in other brain regions. The present study further elaborates on the face and construct validity of a mouse model of PTSD and provides a good foundation to explore potential molecular interactions between microglia and dendritic spines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。