LUM as a novel prognostic marker and its correlation with immune infiltration in gastric cancer: a study based on immunohistochemical analysis and bioinformatics

LUM 作为胃癌新型预后标志物及其与免疫浸润的相关性:基于免疫组织化学分析和生物信息学的研究

阅读:5
作者:Wu Xu #, Shasha Chen #, Qiuju Jiang #, Jinlan He, Feifei Zhang, Zhuying Wang, Caishun Ruan, Bin Shi

Background

Gastric cancer (GC) is considered the sixth highly prevailing malignant neoplasm and is ranked third in terms of cancer mortality rates. To enable an early and efficient diagnosis of GC, it is important to detect the fundamental processes involved in the oncogenesis and progression of gastric malignancy. The understanding of molecular signaling pathways can facilitate the development of more effective therapeutic strategies for GC patients.

Conclusion

Collectively, a thorough bioinformatics analysis was carried out and an AC117386.2/hsa-miR-378c/LUM regulatory axis in the stomach adenocarcinoma dataset was detected. These findings should serve as a guide for future experimental investigations and warrant confirmation from larger studies.

Methods

The screening of genes that exhibited differential expression in early and advanced GC was performed utilizing the Gene Expression Omnibus databases (GSE3438). Based on this, the protein and protein interaction network was constructed to screen for hub genes. The resulting list of hub genes was evaluated with bioinformatic analysis and selected genes were validated the protein expression by immunohistochemistry (IHC). Finally, a competing endogenous RNA network of GC was constructed.

Results

The three genes (ITGB1, LUM, and COL5A2) overexpressed in both early and advanced GC were identified for the first time. Their upregulation has been linked with worse overall survival (OS) time in patients with GC. Only LUM was identified as an independent risk factor for OS among GC patients by means of additional analysis. IHC results demonstrated that the expression of LUM protein was increased in GC tissue, and was positively associated with the pathological T stage. LUM expression can effectively differentiate tumorous tissue from normal tissue (area under the curve = 0.743). The area under 1-, 3-, and 5-year survival relative operating characteristics were greater than 0.6. Biological function enrichment analyses suggested that the genes related to LUM expression were involved in extracellular matrix development-related pathways and enriched in several cancer-related pathways. LUM affects the infiltration degree of cells linked to the immune system in the tumor microenvironment. In GC progression, the AC117386.2/hsa-miR-378c/LUM regulatory axis was also identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。