Electrical conductivity and electrochemical studies of Cr-doped MoO3 nanoflakes for energy storage applications

Cr 掺杂 MoO3 纳米薄片的电导率和电化学研究及其在储能应用中的应用

阅读:8
作者:R Biju Bennie, C Joel, A Nirmal Paul Raj, A Jerold Antony, S Iyyam Pillai

Abstract

The growing demand for electricity has increased the interest of the researchers towards exploration of energy storing devices (ESDs). With the motif for developing electrochemical energy storage devices, this research work is focussed on the study of MoO3 nanoparticles and its doping with chromium as an efficient electrode material for energy storage applications. The nanoparticles were synthesized by hydrothermal method and were examined by powder X-ray diffraction, which determined the thermodynamically stable orthorhombic phase of MoO3, and their morphologies were examined using scanning electron microscopy displaying flake-like structures. The typical vibrational bands of Mo-O were identified from Infra-red and Raman spectral analysis. The ultra violet diffuse reflectance spectra revealed the decrease in optical band gap after doping with chromium. The temperature dependent AC and DC conductivities were enhanced on doping. Electrochemical behaviour of the nanoparticles was probed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) measurements and galvanostatic charge-discharge (GCD) analysis for which specific capacitance (C sp) value of 334 Fg-1 was achieved for Cr-doped MoO3 nanoparticles. The electrochemical performance of the sample was found to be increased after doping with Cr.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。