Effect of GelMA Hydrogel Properties on Long-Term Encapsulation and Myogenic Differentiation of C2C12 Spheroids

GelMA 水凝胶特性对 C2C12 球体的长期封装和成肌分化的影响

阅读:5
作者:Karthika Muthuramalingam, Hyun Jong Lee

Abstract

Skeletal muscle regeneration and engineering hold great promise for the treatment of various muscle-related pathologies and injuries. This research explores the use of gelatin methacrylate (GelMA) hydrogels as a critical component for encapsulating cellular spheroids in the context of muscle tissue engineering and regenerative applications. The preparation of GelMA hydrogels at various concentrations, ranging from 5% to 15%, was characterized and correlated with their mechanical stiffness. The storage modulus was quantified and correlated with GelMA concentration: 6.01 ± 1.02 Pa (5% GelMA), 75.78 ± 6.67 Pa (10% GelMA), and 134.69 ± 7.93 Pa (15% GelMA). In particular, the mechanical properties and swelling capacity of GelMA hydrogels were identified as key determinants affecting cell sprouting and migration from C2C12 spheroids. The controlled balance between these factors was found to significantly enhance the differentiation and functionality of the encapsulated spheroids. Our results highlight the critical role of GelMA hydrogels in orchestrating cellular dynamics and processes within a 3D microenvironment. The study demonstrates that these hydrogels provide a promising scaffold for the long-term encapsulation of spheroids while maintaining high biocompatibility. This research provides valuable insights into the design and use of GelMA hydrogels for improved muscle tissue engineering and regenerative applications, paving the way for innovative approaches to muscle tissue repair and regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。