Epigenome-wide association analysis of pancreatic exocrine cells from high-fat- and normal diet-fed mice and its potential use for understanding the oncogenesis of human pancreatic cancer

高脂和正常饮食喂养小鼠的胰腺外分泌细胞的表观基因组关联分析及其对了解人类胰腺癌发生的潜在用途

阅读:9
作者:Tomoyuki Araki, Masaru Nagashima, Hajime Hirasawa, Fuminobu Tamalu, Yukiko Katagiri, Naofumi Miwa

Abstract

Aberrant DNA methylation is associated with oncogenesis of various human cancers, including pancreatic cancer (PC). PC is the seventh most common cancer, and obesity is a known high-risk factor. However, whether obesity influences DNA methylation in pancreatic exocrine cells and if this influences PC development remain unclear. Here, we performed an epigenome-wide analysis of isolated pancreatic exocrine cells obtained from mice with high-fat-diet-induced obesity (DIO). Using the Illumina Mouse Methylation BeadChip array (280K), we identified 316 differentially methylated regions (DMRs) that were enriched for cellular processes, such as DNA repair, transcription regulation, and cell proliferation, which confirmed obesity-related dysregulation of certain metabolic processes in the pancreatic cells in DIO mice. Comparing the DMRs with those in stage IB PC helped identify 82 overlapping DMRs. Three pathways including the cell hypertrophy pathway involving PLC, PKC, SMAD2/3, and TRKA; the metabolic control pathway involving CREB and AMPK; and the potassium regulation pathway involving K+-channels, were shared between the pancreatic exocrine cells from DIO mice and stage IB PC. Enhanced alteration in the methylation level was observed in PC compared to that in DIO mice. These findings indicated that obesity influences DNA methylation in pancreatic exocrine cells of DIO mice, and persistent dysregulation of DNA methylation in individuals with obesity may result in PC development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。