Retinol-Binding Protein 4 Promotes Cardiac Injury After Myocardial Infarction Via Inducing Cardiomyocyte Pyroptosis Through an Interaction With NLRP3

视黄醇结合蛋白 4 通过与 NLRP3 相互作用诱导心肌细胞焦亡,促进心肌梗死后心脏损伤

阅读:4
作者:Kang-Zhen Zhang, Xi-Yu Shen, Man Wang, Li Wang, Hui-Xian Sun, Xiu-Zhen Li, Jing-Jing Huang, Xiao-Qing Li, Cheng Wu, Can Zhao, Jia-Li Liu, Xiang Lu, Wei Gao

Abstract

Background Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular morbidity and mortality worldwide. Pyroptosis is a form of inflammatory cell death that plays a major role in the development and progression of cardiac injury in AMI. However, the underlying mechanisms for the activation of pyroptosis during AMI are not fully elucidated. Methods and Results Here we show that RBP4 (retinol-binding protein 4), a previous identified proinflammatory adipokine, was increased both in the myocardium of left anterior descending artery ligation-induced AMI mouse model and in ischemia-hypoxia‒induced cardiomyocyte injury model. The upregulated RBP4 may contribute to the activation of cardiomyocyte pyroptosis in AMI because overexpression of RBP4 activated NLRP3 (nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome, promoted the precursor cleavage of Caspase-1, and subsequently induced GSDMD (gasdermin-D)-dependent pyroptosis. In contrast, knockdown of RBP4 alleviated ischemia-hypoxia‒induced activation of NLRP3 inflammasome signaling and pyroptosis in cardiomyocytes. Mechanistically, coimmunoprecipitation assay showed that RBP4 interacted directly with NLRP3 in cardiomyocyte, while genetic knockdown or pharmacological inhibition of NLRP3 attenuated RBP4-induced pyroptosis in cardiomyocytes. Finally, knockdown of RBP4 in heart decreased infarct size and protected against AMI-induced pyroptosis and cardiac dysfunction in mice. Conclusions Taken together, these findings reveal RBP4 as a novel modulator promoting cardiomyocyte pyroptosis via interaction with NLRP3 in AMI. Therefore, targeting cardiac RBP4 might represent a viable strategy for the prevention of cardiac injury in patients with AMI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。