Remote Limb Ischemic Postconditioning Protects Against Ischemic Stroke by Promoting Regulatory T Cells Thriving

远程肢体缺血后处理通过促进调节性 T 细胞的生长来预防缺血性中风

阅读:5
作者:Hai-Han Yu, Xiao-Tong Ma, Xue Ma, Man Chen, Yun-Hui Chu, Long-Jun Wu, Wei Wang, Chuan Qin, Dai-Shi Tian

Abstract

Background Remote limb ischemic postconditioning (RLIPoC) has been demonstrated to protect against ischemic stroke. However, the underlying mechanisms of RLIPoC mediating cross-organ protection remain to be fully elucidated. Methods and Results Ischemic stroke was induced by middle cerebral artery occlusion for 60 minutes. RLIPoC was performed with 3 cycles of 10-minute ischemia followed by 10-minute reperfusion of the bilateral femoral arteries immediately after middle cerebral artery reperfusion. The percentage of regulatory T cells (Tregs) in the spleen, blood, and brain was detected using flow cytometry, and the number of Tregs in the ischemic hemisphere was counted using transgenic mice with an enhanced green fluorescent protein-tagged Foxp3. Furthermore, the metabolic status was monitored dynamically using a multispectral optical imaging system. The Tregs were conditionally depleted in the depletion of Treg transgenic mice after the injection of the diphtheria toxin. The inflammatory response and neuronal apoptosis were investigated using immunofluorescent staining. Infarct volume and neurological deficits were evaluated using magnetic resonance imaging and the modified neurological severity score, respectively. The results showed that RLIPoC substantially reduced infarct volume, improved neurological function, and significantly increased Tregs in the spleen, blood, and ischemic hemisphere after middle cerebral artery occlusion. RLIPoC was followed by subsequent alteration in metabolites, such as flavin adenine dinucleotide and nicotinamide adenine dinucleotide hydrate, both in RLIPoC-conducted local tissues and circulating blood. Furthermore, nicotinamide adenine dinucleotide hydrate can mimic RLIPoC in increasing Tregs. Conversely, the depletion of Tregs using depletion of Treg mice compromised the neuroprotective effects conferred by RLIPoC. Conclusions RLIPoC protects against ischemic brain injury, at least in part by activating and maintaining the Tregs through the nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrate pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。