Coordinated histone modifications are associated with gene expression variation within and between species

协调的组蛋白修饰与物种内和物种间的基因表达变异有关

阅读:7
作者:Misook Ha, Danny W-K Ng, Wen-Hsiung Li, Z Jeffrey Chen

Abstract

Histone modifications regulate gene expression in eukaryotes, but their effects on transcriptomes of a multicellular organism and on transcriptomic divergence between species are poorly understood. Here we present the first nucleotide-resolution maps of histone acetylation, methylation, and core histone in Arabidopsis thaliana and a comprehensive analysis of these and all other available maps with gene expression data in A. thaliana, Arabidopsis arenosa, and allotetraploids. H3K9 acetylation (H3K9ac) and H3K4 trimethylation (H3K4me3) are correlated, and their distribution patterns are associated with Gene Ontology (GO) functional classifications. Highly dense and narrow distributions of these modifications near transcriptional start sites are associated with constitutive expression of genes involved in translation, whereas broad distributions toward coding regions correlate with expression variation of the genes involved in photosynthesis, carbohydrate metabolism, and defense responses. Compared to animal stem cells, dispersed distributions of H3K27me3 without bivalent H3K4me3 and H3K9ac marks correlate with developmentally repressed genes in Arabidopsis. Finally, genes affected by A. thaliana histone deacetylase 1 mutation tend to show high levels of expression variation within and between species. The data suggest that genome-wide coordinated modifications of histone acetylation and methylation provide a general mechanism for gene expression changes within and between species and in allopolyploids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。