Metabolic Regulation of Two pksCT Gene Transcripts in Monascus ruber Impacts Citrinin Biosynthesis

红曲霉中两种 pksCT 基因转录本的代谢调控影响桔霉素的生物合成

阅读:4
作者:Yi He, Lisha Zhu, Xingxing Dong, Aoran Li, Suyin Xu, Liling Wang, Yanchun Shao

Abstract

Citrinin (CIT), a secondary metabolite produced by the filamentous fungi Monascus species, exhibits nephrotoxic, hepatotoxic, and carcinogenic effects in mammals, remarkably restricting the utilization of Monascus-derived products. CIT synthesis is mediated through the pksCT gene and modified by multiple genetic factors. Here, the regulatory effects of two pksCT transcripts, pksCTα, and pksCTβ, generated via pre-mRNA alternative splicing (AS), were investigated using hairpin RNA (ihpRNA) interference, and their impact on CIT biosynthesis and the underlying mechanisms were assessed through chemical biology and transcriptome analyses. The CIT yield in ihpRNA-pksCTα and ihpRNA-pksCT (α + β) transformants decreased from 7.2 μg/mL in the wild-type strain to 3.8 μg/mL and 0.08 μg/mL, respectively. Notably, several genes in the CIT biosynthetic gene cluster, specifically mrl3, mrl5, mrr1, and mrr5 in the ihpRNA-pksCT (α + β) transformant, were downregulated. Transcriptome results revealed that silencing pksCT has a great impact on carbohydrate metabolism, amino acid metabolism, lipid metabolism, and AS events. The key enzymes in the citrate cycle (TCA cycle) and glycolysis were significantly inhibited in the transformants, leading to a decrease in the production of biosynthetic precursors, such as acetyl-coenzyme-A (acetyl-coA) and malonyl-coenzyme-A (malonyl-coA). Furthermore, the reduction of CIT has a regulatory effect on lipid metabolism via redirecting acetyl-coA from CIT biosynthesis towards lipid biosynthesis. These findings offer insights into the mechanisms underlying CIT biosynthesis and AS in Monascus, thus providing a foundation for future research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。