Systemic silencing of PHD2 causes reversible immune regulatory dysfunction

PHD2 的系统性沉默导致可逆性免疫调节功能障碍

阅读:5
作者:Atsushi Yamamoto, Joanna Hester, Philip S Macklin, Kento Kawai, Masateru Uchiyama, Daniel Biggs, Tammie Bishop, Katherine Bull, Xiaotong Cheng, Eleanor Cawthorne, Mathew L Coleman, Tanya L Crockford, Ben Davies, Lukas E Dow, Rob Goldin, Kamil Kranc, Hiromi Kudo, Hannah Lawson, James McAuliffe, Kate

Abstract

Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。