Transgenic overexpression of heart-specific adenine nucleotide translocase 1 positively affects contractile function in cardiomyocytes

心脏特异性腺嘌呤核苷酸转位酶 1 的转基因过度表达对心肌细胞的收缩功能产生积极影响

阅读:10
作者:Inga Vogelpohl, Roland Vetter, Jacqueline Heger, Linda Ebermann, Gerhild Euler, Heinz-Peter Schultheiss, Andrea Dörner

Aims

The adenine nucleotide translocase (ANT) exchanges ATP and ADP over the inner mitochondrial membrane, supplying the cells with energy. Interestingly, myocardial ANT1 overexpression preserves cardiac structure and function under pathophysiological conditions. To ascertain whether the contractile system is directly affected by increased ANT1 expression, we analyzed cell morphology, contraction and relaxation parameters of ANT1 transgenic (ANT1-TG) cardiomyocytes, myofibrillar protein expression, and Ca(2+) handling in ANT1-TG rat hearts.

Background/aims

The adenine nucleotide translocase (ANT) exchanges ATP and ADP over the inner mitochondrial membrane, supplying the cells with energy. Interestingly, myocardial ANT1 overexpression preserves cardiac structure and function under pathophysiological conditions. To ascertain whether the contractile system is directly affected by increased ANT1 expression, we analyzed cell morphology, contraction and relaxation parameters of ANT1 transgenic (ANT1-TG) cardiomyocytes, myofibrillar protein expression, and Ca(2+) handling in ANT1-TG rat hearts.

Conclusion

These data reveal a close association of elevated mitochondrial ATP/ADP transportation via ANT1 with increased contractile function. Furthermore, the ANT1-TGs exhibit an elevation in SR Ca(2+) transport that contributes to increased cardiac work, which may protect the heart under pathophysiological conditions.

Results

ANT1-TG cardiomyoycytes displayed an elevation in cell volume (52.6 ± 12.0%; p<0.0001) in comparison to wildtype (WT) cells. Concurrently, contractile function in ANT1-TG cells was significantly increased, measured by a decline in time to peak contraction (TTP) and RT50, the time from peak contraction to 50% relaxation, during stimulation with 0.5, 1, and 2 Hz. Quantification of myofibrillar proteins exhibited a marked increase in total cardiac myosin heavy chain (51.8 ± 12.8%) (p<0.03), beta myosin heavy chain (22.9 ± 5.0%; p<0.03), actin (23.8 ± 8.8%; p<0.05), and troponin I (51.5 ± 13.7%; p<0.01). Regarding intracellular Ca(2+) handling, ANT1-TGs revealed a significant elevation in sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) protein level (22.2 ± 4.7%; p<0.01) associated with increased Ca(2+) uptake into the SR (34%; p<0.01). Moreover, the plasmalemmal Ca(2+) ATPase (PMCA) indicated advanced protein expression (23.8 ± 4.8%; p<0.01), whereas the protein amount of the Na(+)/Ca(2+) exchanger was not altered in ANT1 overexpressing hearts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。