Osteoclast-Derived Autotaxin, a Distinguishing Factor for Inflammatory Bone Loss

破骨细胞衍生的自分泌运动因子是炎症性骨质流失的鉴别因素

阅读:5
作者:Sacha Flammier, Olivier Peyruchaud, Fanny Bourguillault, François Duboeuf, Jean-Luc Davignon, Derek D Norman, Sylvie Isaac, Hubert Marotte, Gabor Tigyi, Irma Machuca-Gayet, Fabienne Coury

Conclusion

Our results identify ATX as a novel OC factor that specifically controls inflammation-induced bone erosions and systemic bone loss. Therefore, ATX inhibition offers a novel therapeutic approach for potentially preventing bone erosion in patients with RA.

Methods

ATX was targeted by inhibitory treatment with pharmacologic drugs and also by conditional inactivation of the ATX gene Ennp2 in murine OCs (ΔATXC tsk ). Arthritic and erosive diseases were studied in human tumor necrosis factor-transgenic (hTNF+/- ) mice and mice with K/BxN serum transfer-induced arthritis. Systemic bone loss was also analyzed in mice with lipopolysaccharide (LPS)-induced inflammation and estrogen deprivation. Joint inflammation and bone erosion were assessed by histology and micro-computed tomography. The role of ATX in RA was also examined in OC differentiation and activity assays.

Objective

The severity of rheumatoid arthritis (RA) correlates directly with bone erosions arising from osteoclast (OC) hyperactivity. Despite the fact that inflammation may be controlled in patients with RA, those in a state of sustained clinical remission or low disease activity may continue to accrue erosions, which supports the need for treatments that would be suitable for long-lasting inhibition of OC activity without altering the physiologic function of OCs in bone remodeling. Autotaxin (ATX) contributes to inflammation, but its role in bone erosion is unknown.

Results

OCs present at sites of inflammation overexpressed ATX. Pharmacologic inhibition of ATX in hTNF+/- mice, as compared to vehicle-treated controls, significantly mitigated focal bone erosion (36% decrease; P < 0.05) and systemic bone loss (43% decrease; P < 0.05), without affecting synovial inflammation. OC-derived ATX was revealed to be instrumental in OC bone resorptive activity and was up-regulated by the inflammation elicited in the presence of TNF or LPS. Specific loss of ATX in OCs from mice subjected to ovariectomy significantly protected against the systemic bone loss and erosion that had been induced with LPS and K/BxN serum treatments (30% reversal of systemic bone loss [P < 0.01]; 55% reversal of erosion [P < 0.001]), without conferring bone-protective properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。