Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence

重新进食可激活下丘脑背内侧的神经元,抑制食物摄入并促进正价态

阅读:4
作者:Daigo Imoto, Izumi Yamamoto, Hirokazu Matsunaga, Toya Yonekura, Ming-Liang Lee, Kan X Kato, Takeshi Yamasaki, Shucheng Xu, Taiga Ishimoto, Satoshi Yamagata, Ken-Ichi Otsuguro, Motohiro Horiuchi, Norifumi Iijima, Kazuhiro Kimura, Chitoku Toda

Conclusions

We identified a novel cell type of DMH neurons that can inhibit food intake and promote feeding-induced positive valence. Our study provides insight into the role of DMH and its molecular mechanism in the regulation of appetite and emotion.

Methods

Targeted recombination in active populations (TRAP) is a newly developed method for labeling active neurons by using tamoxifen-inducible Cre recombination controlled by the promoter of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1), a member of immediate early genes. Transgenic mice for TRAP were fasted overnight, re-fed with normal diet, and injected with 4-hydroxytamoxifen 1 h after the refeeding to label the active neurons. The role of labeled neurons was examined by expressing excitatory or inhibitory designer receptors exclusively activated by designer drugs (DREADDs). The labeled neurons were extracted and RNA sequencing was performed to identify genes that are specifically expressed in these neurons.

Objective

The regulation of food intake is a major research area in the study of obesity, which plays a key role in the development of metabolic syndrome. Gene targeting studies have clarified the roles of hypothalamic neurons in feeding behavior, but the deletion of a gene has a long-term effect on neurophysiology. Our understanding of short-term changes such as appetite under physiological conditions is therefore still limited.

Results

Fasting-refeeding activated and labeled neurons in the compact part of the dorsomedial hypothalamus (DMH) that project to the paraventricular hypothalamic nucleus. Chemogenetic activation of the labeled DMH neurons decreased food intake and developed place preference, an indicator of positive valence. Chemogenetic activation or inhibition of these neurons had no influence on the whole-body glucose metabolism. The labeled DMH neurons expressed prodynorphin (pdyn), gastrin-releasing peptide (GRP), cholecystokinin (CCK), and thyrotropin-releasing hormone receptor (Trhr) genes. Conclusions: We identified a novel cell type of DMH neurons that can inhibit food intake and promote feeding-induced positive valence. Our study provides insight into the role of DMH and its molecular mechanism in the regulation of appetite and emotion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。