Protein-retention expansion microscopy for visualizing subcellular organelles in fixed brain tissue

利用蛋白质滞留扩展显微镜技术观察固定脑组织中的亚细胞器

阅读:3
作者:Logan A Campbell ,Katy E Pannoni ,Niesha A Savory ,Dinesh Lal ,Shannon Farris

Abstract

Background: Protein expansion microscopy (proExM) is a powerful technique that crosslinks proteins to a swellable hydrogel to physically expand and optically clear biological samples. The resulting increased resolution (~70 nm) and physical separation of labeled proteins make it an attractive tool for studying the localization of subcellular organelles in densely packed tissues, such as the brain. However, the digestion and expansion process greatly reduce fluorescence signals making it necessary to optimize ExM conditions per sample for specific end goals. New method: Here we compare the staining and digestion conditions of existing proExM workflows to identify the optimal protocol for visualizing subcellular organelles (mitochondria and the Golgi apparatus) within reporter-labeled neurons in fixed mouse brain tissue. Results: We found that immunostaining before proExM and using a proteinase K based digestion for 8 h consistently resulted in robust fluorescence retention for immunolabeled subcellular organelles and genetically-encoded reporters. Comparison with existing methods: With these methods, we more accurately quantified mitochondria size and number and better visualized Golgi ultrastructure in individual CA2 neurons in the mouse hippocampus. Conclusions: This organelle optimized proExM protocol will be broadly useful for investigators interested in visualizing the spatial distribution of immunolabeled subcellular organelles in various reporter mouse lines, reducing effort, time and resources on the optimization process. Keywords: Expansion microscopy; Golgi apparatus; Hippocampus; Mitochondria; Spines; Subcellular localization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。