Songorine ameliorates LPS-induced sepsis cardiomyopathy by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis

Songorine 通过 Wnt/β-catenin 信号通路介导的线粒体生物合成改善 LPS 诱发的脓毒症性心肌病

阅读:9
作者:Min Chen #, Shanjiao Huang #, Shuoyun Weng, Junting Weng, Rongjie Guo, Bingbing Shi, Danjuan Liu

Abstract

Septic cardiomyopathy (SCM) is manifested by impairment of cardiac contractile function with myocardial mitochondrial dysregulation. Natural product, songorine (SGR), a diterpenoid alkaloid derived from the lateral root of Aconitum carmichaeli, has been reported for the treatment of heart failure. Here, the protective role of SGR in heart injury of SCM was investigated and its underlying action of mechanism was explored. Firstly, the mouse and cardiomyocytes (H9C2 cell) SCM model induced by LPS were established to evaluate the therapeutic effect of SGR. The in vivo results exhibited that SGR rescued the survival rate of SCM mice, restored the loss of ejection fraction (EF) and fractional shortening (FS), and reduced left ventricular systolic diameter and left ventricular diastole diameter (LVIDs, LVIDd) by echocardiography. SGR improved the mitochondrial biosynthesis and myocardial fiber structure and arranged them neatly by transmission electron microscope (TEM). Further, SGR inhibited inflammatory targets myeloperoxidase (MPO) and tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and plasminogen activator inhibitor-1 (PAI-1). And SGR activated the mitochondrial biosynthesis-related peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), β-catenin, and matrix metallopeptidase 2 (MMP2) proteins. Meanwhile, the in vitro results showed that SGR promoted the increased the myocardial H9C2 cell viability, and mitochondrial biosynthesis and structure. SGR also blocked the inflammatory factors and reversed PGC-1α, β-catenin, and MMP2 in vitro, while SGR alleviated the myocardial cell apoptosis via flow cytometry. The findings indicate that SGR mitigates sepsis-caused myocardial damage by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. SGR may be a promising candidate for treatment of SCM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。