(Pro)renin receptor mediates albumin-induced cellular responses: role of site-1 protease-derived soluble (pro)renin receptor in renal epithelial cells

(原)肾素受体介导白蛋白诱导的细胞反应:位点 1 蛋白酶衍生的可溶性(原)肾素受体在肾上皮细胞中的作用

阅读:12
作者:Hui Fang, Chuanming Xu, Aihua Lu, Chang-Jiang Zou, Shiying Xie, Yanting Chen, Li Zhou, Mi Liu, Lei Wang, Weidong Wang, Tianxin Yang

Abstract

Proteinuria is a characteristic of chronic kidney disease and also a causative factor that promotes the disease progression, in part, via activation of the intrarenal renin-angiotensin system (RAS). (Pro)renin receptor (PRR), a newly discovered component of the RAS, binds renin and (pro)renin to promote angiotensin I generation. The present study was performed to test the role of soluble PRR (sPRR) in albumin overload-induced responses in cultured human renal proximal tubular cell line human kidney 2 (HK-2) cells. Bovine serum albmuin (BSA) treatment for 24 h at 20 mg/ml induced renin activity and inflammation, both of which were attenuated by a PRR decoy inhibitor PRO20. BSA treatment induced a more than fivefold increase in medium sPRR due to enhanced cleavage of PRR. Surprisingly, this cleavage event was unaffected by inhibition of furin or a disintegrin and metalloproteinase 19. Screening for a novel cleavage enzyme led to the identification of site-1 protease (S1P). Inhibition of S1P with PF-429242 or siRNA remarkably suppressed BSA-induced sPRR production, renin activity, and inflammatory response. Administration of a recombinant sPRR, termed sPRR-His, reversed the effects of S1P inhibition. In HK-2 cells overexpressing PRR, mutagenesis of the S1P, but not furin cleavage site, reduced sPRR levels. Together, these results suggest that PRR mediates albumin-induced cellular responses through S1P-derived sPRR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。