Sterol O-acyltransferase 1 (SOAT1, ACAT) is a novel target of steroidogenic factor-1 (SF-1, NR5A1, Ad4BP) in the human adrenal

固醇 O-酰基转移酶 1 (SOAT1, ACAT) 是人类肾上腺中类固醇生成因子 1 (SF-1, NR5A1, Ad4BP) 的新靶点

阅读:8
作者:Bruno Ferraz-de-Souza, Rebecca E Hudson-Davies, Lin Lin, Rahul Parnaik, Mike Hubank, Mehul T Dattani, John C Achermann

Conclusions

Our reverse discovery approach led to the identification of novel SF-1 targets and defined SOAT1 as an important factor in human adrenal steroidogenesis. SF-1-dependent up-regulation of SOAT1 may be important for maintaining readily-releasable cholesterol reserves needed for active steroidogenesis and during episodes of recurrent stress.

Objective

We aimed to identify novel targets of SF-1 in the human adrenal. These factors could be important regulators of adrenal development and steroidogenesis and potential candidates for adrenal dysfunction. Design: A gene discovery strategy was developed based on bidirectional manipulation of SF-1. Overexpression or knockdown of SF-1 in NCI-H295R human adrenocortical cells was used to identify a subset of positively-regulated SF-1 targets.

Results

This approach identified well-established SF-1 target genes (STAR, CYP11A) and several novel genes (VSNL1, ZIM2, PEG3, SOAT1, and MTSS1). Given its role in cholesterol metabolism, sterol O-acyltransferase 1 (SOAT1, previously referred to as acyl-Coenzyme A:cholesterol acyltransferase 1, ACAT) was studied further and found to be expressed in the developing human fetal adrenal cortex. We hypothesized that impaired SOAT1 activity could result in adrenal insufficiency through reduced cholesteryl ester reserves or through toxic destruction of the adrenal cells during development. Therefore, mutational analysis of SOAT1 in a cohort of 43 patients with unexplained adrenal insufficiency was performed but failed to reveal significant coding sequence changes. Conclusions: Our reverse discovery approach led to the identification of novel SF-1 targets and defined SOAT1 as an important factor in human adrenal steroidogenesis. SF-1-dependent up-regulation of SOAT1 may be important for maintaining readily-releasable cholesterol reserves needed for active steroidogenesis and during episodes of recurrent stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。