Dynamic chromatin modifications control GnRH gene expression during neuronal differentiation and protein kinase C signal transduction

动态染色质修饰控制神经元分化和蛋白激酶 C 信号转导过程中的 GnRH 基因表达

阅读:6
作者:Anita K Iyer, Melissa J Brayman, Pamela L Mellon

Abstract

GnRH, a neuropeptide produced by rare, specialized hypothalamic secretory neurons, is critical for reproduction. During development, GnRH gene expression increases as neurons migrate from the olfactory placode to the hypothalamus, with highest levels in the mature, postmitotic state. While neuronal differentiation is known to be controlled by chromatin modulations, the role of chromatin dynamics in GnRH gene regulation has not been studied. Here, we use mature and immature GnRH neuronal cell models to show that both neuron-specific and protein kinase C regulation of GnRH expression are mediated by chromatin structure and histone modifications. Only in GT1-7 mature GnRH neuronal cells did GnRH regulatory elements display high sensitivity to DNase and enrichment of active histone markers histone-H3 acetylation and H3 lysine 4 trimethylation (H3K4-Me3), as well as RNA polymerase II (RNAPII) binding and enhancer RNA transcription. In contrast, H3K9-Me2, a marker of inactive chromatin, was highest in nonneuronal cells, low in GT1-7 cells, and intermediate in immature GnRH neuronal cells. The chromatin of the GnRH gene was therefore active in mature GnRH neuronal cells, inactive in nonneuronal cells, but not fully inactive in immature GnRH neuronal cells. Activation of protein kinase C (PKC) potently represses GnRH expression. PKC activation caused closing of the chromatin and decreased RNAPII occupancy at the GnRH minimal promoter (-278/-97). At GnRH-Enhancer-1 (-2404/-2100), PKC activation decreased phosphorylated-RNAPII binding, enhancer RNA transcription, and H3 acetylation, and reciprocally increased H3K9-Me2. Chromatin modifications therefore participate in the dynamic regulation and specification of GnRH expression to differentiated hypothalamic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。